Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically. Molecular model of a crystal containing a dissociated dislocation, atoms are encoded with the atomic shear strain. Below, snapshots of simulation results showing the relative positions of atoms in the rectangular prism elements; each element has dimensions 2.556 Å by 2.087 Å by 2.213 Å and has one atom at the center.
Stanford researchers developed the skin-like sensor on the fingertip of this robotic hand, and programmed it to touch the fruit without damage. One day they hope to create control systems to enable a robot to perceive the characteristics of objects and autonomously calculate how much force to apply.
Gold nanoparticles, which act like "nanolenses," concentrate the energy produced by the extremely short pulse of a femtosecond laser to create a nanoscale incision on the surface of the eye's retina cells. This technology, which preserves cell integrity, can be used to effectively inject drugs or genes into specific areas of the eye, offering new hope to people with glaucoma, retinitis or macular degeneration.
No bulky gloves, no sophisticated camera systems -- just an ultra-thin golden foil on the middle finger. That's all the Dresden researchers need to control a virtual panda with the help of the Earth's magnetic field. When the hand swipes left, towards the magnetic north, the animal also moves in that direction (a). A swipe to the right, makes it go the opposite way (b). When the hand moves towards the middle, the panda moves back slightly towards the left (c).
Research associate Mingxing Lin (sitting) and materials scientists Dmytro Nykypanchuck (left, standing) and Mircea Cotlet of Brookhaven Lab's Center for Functional Nanomaterials dramatically improved the light response of electronic devices made out of graphene and an electrically conducting polymer by changing the morphology of the polymer from a thin film to a "nanowire" mesh. An image of this mesh architecture--captured with an atomic force microscope, in which a small mechanical transducer called a cantilever probe scans across a material's surface--is seen on the computer screen.
This study measured skyrmions in an ultra-thin material made of a ferromagnetic layer of strontium ruthenate (SrRuO3), overlaid with a ferroelectric layer of barium titanate (BaTiO3) and grown on a strontium titanate (SrTiO3) substrate. BaTiO3 is ferroelectric, meaning that it has a switchable and permanent electric polarization (), while SrRuO3 is ferromagnetic below 160 Kelvin (-113 Celsius). At the BaTiO3/SrRuO3 interface, the BaTiO3 ferroelectric polarization swirls the spins in SrRuO3, generating skyrmions. If the researchers flip the direction of polarization in BaTiO3, the density of the skyrmions changes.
This is visible imaging of (a) shell pellet hitting low-field-side boundary of plasma, (b) continuing through plasma toward core, (c) ablating and releasing boron dust in core. (d) Expanded view of (c), highlighting shell and dust. (e) Plasma cross-section with red dot indicating pellet location at time of dust release in (c). Injection velocity ? 230 m/s.