Researchers at Chalmers University of Technology have discovered why there is a speed limit on how fast the properties of light can be changed with the help of specially designed materials. This new understanding can point the way forward for the next generation of consumer electronics, such as smart watches, screens and glasses.
Fig. (a) are the galvanostatic charge-discharge curves of BNAs integrated electrode at a current density of 25 μA cm-2 . The 1st, 2nd discharge capacities of BNAs integrated electrode are 2471.5, 2311.7 μAh·cm-2 (1861.8, 1741.4 mAh g-1). Fig. (b) reveals the rate capability of BNAs integrated electrode at current densities of 250, 500, 1000, 2000, 5000 μAh·cm-2 respectively. The discharge capacities are 1219, 1128, 972, 678, 430 μAh·cm-2 (918.2, 849.7, 732.2, 510.7, 323.9 mAh g-1), respectively. Fig. (c) shows the cycling stability of BNAs integrated electrodes. Reversible capacity of BNAs integrated electrodes can maintain a capacity of 410 μAh·cm-2 (308.8 mAh g-1, at a current density of 320 μAh·cm-2) after 600 cycles. When the current density was 75 μAh·cm-2, the electrode exhibits a high capacity of 600 μAh·cm-2 (451.9 mAh g-1) after 500 cycles. The above results show that the integration of active material and current collector can greatly improve the capacity, rate ability and cyclical stability of the battery.
The left figure is an example of time series of fluctuation of power generation outputs. The right figure shows the histogram of the frequency of corresponding power fluctuation. When we can assume mild fluctuation as illustrated by the red line, modeling with normal distribution is acceptable. However, wind power generation fluctuation contains abrupt changes as illustrated by the blue line. Consequently, the corresponding histogram has slowly-decaying heavy tails, which represents the extremal outliers.
Energetic growth. The UVM spinoff company Packetized Energy is on a roll, adding staff, customers and business partners at an impressive clip. Surrounded by full and part-time staff in the company's new offices in Chace Mill are (left to right) faculty founders Mads Almassalkhi, Jeff Frolik and Paul Hines and new company CEO Scott Johnstone. The company's clever algorithms help utilities tap the potential of renewables like solar and wind.