Supercapacitor advances to transform electric vehicles

Date
07/25/2014

 PDF

IDTechEx's report "Functional Materials for Supercapacitors / Ultracapacitors / EDLC 2015-2025" explains the materials and performance, achievements and objectives of the 80 manufacturers of supercapacitors and supercabatteries and researchers.

It reveals the performance, formulation and morphology of the key materials used and those planned for the future. The report embraces work both by the device manufacturers and by the many third party developers and suppliers of the key functional materials across the world.

The structure of a supercapacitor and supercabattery is introduced together with the materials and parameters needed for the applications with the greatest business potential. It focuses on the primary market need for the future - lower cost with higher energy density. The materials are assessed and progress reported and predicted. That means electrode and then electrolyte materials, with separators third in importance. For electrodes, that includes many types of graphene, carbon nanotubes, nano-onions, aerogels and chemically-derived carbons. Important for future electrolyte needs are new neutral aqueous electrolytes permitting low cost current collectors now with higher voltage, new ionic liquids that work at low temperatures and new organic solvents - less toxic and non-flammable.

For electrodes, the various hierarchical (wide to narrow pores in bulk), exohedral (large area allotropes) and thin film options are compared. They are related to various end points from micro-supercapacitors to structural ones forming part of a building, smart skin on ships or e-fibers in textiles. Emerging, there is a wealth of different needs for high added value functional materials.

The material needs of large supercapacitors appearing in electric vehicles are the main focus – primarily partly or wholly replacing traction batteries. In addition they will replace inverter capacitors and be even more useful in many other EV locations including regenerative braking backup and bus door opening.

For example, IDTechEx forecasts the best energy density that will be achieved in volume production in the next 15 years, the best candidate materials, capacitor structures and electrolytes for achieving this and the value market resulting.

IDTechEx shows which electrode functional materials best leverage the next-generation electrolytes so toxicity and flammability will be a thing of the past. Key players are identified and their plans revealed based on a host of ongoing interviews.

Market research reports by IDTechEx

Also attend Supercapacitors USA 2014, 19-20 November in Santa Clara, CA.

RELATED