To keep engineers and scientists up to date with the latest developments in PC based digitizer technology Spectrum has published a handbook that covers the major product features of this powerful class of instrument and also explains when a digitizer can replace an oscilloscope. The 120 page booklet is printed in full color and includes a number of graphical images that highlight and explain key digitizer concepts and their application.
Topics covered include how and when to select a digitizer, understanding the various terms and comparing their performance with other instruments, such as digital oscilloscopes. The handbook then has sections that explain how to achieve the best performance from a product with emphasis being given to measurement speed and accuracy. Examples show how to setup a digitizer and use the various acquisition, trigger and readout modes to ensure important events are always captured and that the acquired data is analyzed as fast as possible. More examples demonstrate the effects of proper signal conditioning and explain how digitizers can be used with a variety of different probes and sensors.
The handbook then discusses the importance of software and what effect this has on project development. It explains the structure of device drivers and how you can program the cards using today's most popular programming languages such as Visual C++, Borland C++, Gnu C++, Visual Basic, VB.NET, C#, J#, Python and Delphi as well as with third party software tools such as LabVIEW and MATLAB. To help with programming the handbook discusses the advantages of using debug logging and other tools that allow you to test hardware setups and assess their potential data transfer speeds. For those not wanting to develop their own code there is even a section about SBench6, a graphical user interface, that allows you to control and operate Spectrum digitizers without the need for any programming whatsoever!
In addition, the handbook includes a section on signal processing. It highlights the benefits of using techniques such as signal averaging and frequency domain analysis and discusses their various advantages and disadvantages.
The handbook will provide a useful reference for anybody using or thinking about using a digitizer in almost any test and measurement application. If you would like a free copy of the handbook simply request one by visiting the Spectrum website.