The Full Service Foundry division of ams AG, a leading provider of high performance analog ICs and sensors, Fraunhofer Institute for Integrated Circuits IIS and the Space Research Institute (Institut für Weltraumforschung, IWF) of the Austrian Academy of Sciences (Österreichische Akademie der Wissenshaften, OeAW) presented the very promising results of its highly accurate measurements of the Earth’s magnetosphere from space.
As part of NASA’s “Magnetospheric Multiscale” mission launched in March 2015, four identically equipped satellites are performing highly accurate three-dimensional measurements of the Earth’s magnetosphere. The ambitious goal of this mission is to explore the dynamics of the magnetosphere, measuring with extreme accuracy very small variations in the Earth’s magnetic field. The research effort spearheaded by the Space Research Institute (based in Graz, Austria) is focused on the so-called magnetic reconnection, which is a physical process in which the Earth’s magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnection is one of the mechanisms responsible for the aurora, as well as for temporary disturbances in the Earth's magnetosphere.
Like all measurement instruments and equipment in satellites, the Space Research Institute’s magnetometer has to be as small and light as possible, while consuming very little power. In addition, it must offer very high accuracy under harsh conditions such as very low temperatures and radiation.
Developed by the Fraunhofer Institute for Integrated Circuits IIS in co-operation with the Space Re-search Institute, a tiny custom application specific integrated circuit (ASIC) enables the satellites’ digital flux-gate magnetometer (DFG) to acquire highly accurate three-dimensional measurements of the magnetosphere while drawing ultra-low current. The DFG sensor was supplied by the University of California, Los Angeles. Operating at a resolution of 10 picoTesla, which is several thousand times more sensitive than a conventional electronic compass, the device is able to sense the smallest variations in magnetic flux.
The Fraunhofer ASIC was fabricated by ams on its specialty 0.35µm CMOS (C35) process techno-logy, which allows for the design of complex analog/mixed-signal integrated circuits. Based on a unique process architecture, the rad-hard C35 technology is very well suited for use in space and aerospace applications. The Fraunhofer and Space Research Institute design team also benefited from ams’ turnkey solutions for IC design, which include a comprehensive Process Development Kit (PDK) and IP block portfolio, advanced process technologies as well as product qualification services and supply chain management capabilities. These enable ams’ foundry customers to significantly mitigate their development risks and to reduce the duration of the development cycle.
“The ams specialty 0.35µm CMOS process enabled the team of researchers and scientists at Fraun-hofer IIS to develop a complex analog/mixed-signal integrated circuit that impressively outperformed our expectations in all respects – performance, power consumption, die area and reliability”, said Johann Hauer, project manager for ASIC Development at Fraunhofer IIS.
“After two months in space, we are very proud to confirm that the chip-based magnetometer signifi-cantly surpasses the requirements of accuracy and stability”, commented Werner Magnes, deputy director at the Graz Space Research Institute.
“During almost 25 years of co-operation with Fraunhofer IIS, ams has successfully developed a vast number of complex integrated circuits for both research as well as industrial programs. We are happy that integrated circuits manufactured by ams now operate reliably in outer space and contribute to a better understanding of the Earth’s physics” stated Markus Wuchse, general manager of ams’ Full Service Foundry division.